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Let us consider a distribution c with is the sum of another distribution, w, and
a linear combination of Dirac distribution with masses A I' ... , A. at the points
aI' ..., aq. We have proposed a method (in "IMACS Transaction on Orthogonal
Polynomials and Their Applications" (c. Brezinski, L. Gori, and A. Ronveaux,
Eds.), pp.365-372, Baltzer, Basel, 1991) to compute the points aI' ..., aq when w
has an asymptotic property when applied to a given sequence of orthogonal poly­
nomials. This paper is devoted to the computation of the masses AI' ..., A q with the
aid of Chebyshev polynomials, Christoffel function and f.-algorithm according to
the distribution w. An application to finding the limit of totally monotonic sequence
is also given. © 1992 Academic Press. tnc.

1. INTRODUCTION AND NOTATIONS

The space of linear functionals (distributions) defined on P, space of
polynomials, will be denoted by r. The Dirac distribution 15'0 is defined as
follows:

PEP, XOEC.

Let c and w be two elements of r. We assume that the moments

n=O, 1, ...,

are given and that c and ware related by the following relation:

q

c=w+ " At5i..J 'at
;~ I

alE [-1,1], a i distincts, A;EC- {O}.
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If w has an integral representation whose support is a compact interval
of R, then a general convergence theorem of Goncar [10] for the Pade
approximants to the sum of a Markov-Stieltjes function h(t) and a rational
fraction r(t) permits to compute the points ai' ..., aq (which are the inverse
of the poles of r(t)) and the residues AI' ..., A q in the case where ai' ..., aq

do not lie on the cut of h( t).
If w is absolutely continuous with respect to the Lebesgue measure, with

a positive density w, then w can be approximated by methods explained in
[15] and using Christoffel functions, with Turan determinants [15, p.80;
1], or with continued fraction [2, 11]).

Here, we present a method for computing the residues A I' ... , A q when
points ai' ... , aq are known (or computed by the method described in [16])
when w is absolutely continuous (w non necessarily positive) with respect
to the Lebesgue measure on a compact interval of R (section 2) or when
w is a positive distribution on R (Section 3).

2. CHEBYSHEV POLYNOMIALS

Let c and w be two distributions defined on P and which satisfy relation
(1 ).

Moreover, we suppose that w has an integral representation on a
compact interval of R which can be assumed to be [ -1, 1]:

(w,p) :=r p(x) w(x) dx
-I

(2)

In order to get the mass Al at the point ai' the idea is to apply both sides
of equality (1) to the characteristic function X(at} defined as the following:

X{a/} (x) = 1

This formally gives

o otherwise.

(c, X(ail ) = (w, X{ail ) + A I = AI,

since w is absolutely continuous with respect to dx. Thus, Al appears as the
moment of X(ail by the distribution c. Since only the polynomial moments
Cn are known, it is realistic to approximate the characteristic function by a
sequence of polynomials In E Pn in a way such that the equality

A I = lim (c, In)
n ~ 00

holds.
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A convenient means to construct such polynomials In is the kernel
polynomial for the weight dx/~. Let us first recall some properties of
Chebyshev polynomials of the first kind Tn:

Tn(x) = cos(n Arccos x)

Three-terms recurrence relationship:

I
Tn+ 1 (x) = 2xTn(x) - Tn-I (x)
To= 1 T1 =X.

Orthogonality relation:

n=O, 1, ....

n= 1, 2, ...

2 f+1 dx
kEN, IEN*, - Tdx) T,(x) ~=bkdKroneckersymbol).

n -I V l-x2

The sequence (1/~) To, J(2/n) T1 (x), ..., J(2/n) Tn(x) is the system of
orthonormal polynomials with respect to the weight function 1/~,
-1<x<1.

Let us consider, now, the reproducing kernel polynomial (which is
orthogonal W.r.t. (x - a)dX/~)

kn(x, a)= [Tn+dx) Tn(a)- Tn(x) Tn+da)]/(x-a) (3)

which, due to Christoffel identity can be rewritten as

n

kn(x, a)= L' Tdx) Tda),
k=O

where L:t=o U i := !uo + U 1 + '" + Un'

From the definition of Tn' it follows immediately that

I(x-a) kn(x, a)1 ~ 2,

The value of kn(x, a) at x=a is

-l~x~+I, -1~a~+1

n

kn(a, a)= I' T~(a)=T:+ 1 (a) Tn(a)- T:(a) Tn+ 1 (a).
k=O

An identity between Tn and Un' Chebyshev polynomial of second kind
also gives

The polynomial
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satisfies the following properties [6, p. 102]:

(i) In(a,a)=1

(ii) IIn (X, a)1 ~4/n Ix-al n~3, x, aE [-1,1]

(iii) IIn (x, a)1 ~4 n ~ 3, x, aE [-1,1].

The kernel polynomial In (x, a) = "L'/:=o Tk(x) Tda)!L'/:=o TUa) with
a = 0.5 and n = 20 is plotted in Fig. 1.

The Lebesgue theorem insures that

and so

q

= lim L A;ln(a;, a).
n--+oo i =l

If a = a/ and ai distincts E [ -1, 1] then

and thus we get

A/= lim c[ln(x, al )]
n ~ 00

-0.5

FIGURE 1
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THEOREM 1. Let c and w be two distributions satisfying (1). If w satisfies

(w, p> =r p(x) w(x) dx
-I

then

= lim 4L~=oc(Tk) Tk(a,).
n~oo (U2n (a,)+2n+ 1)

(4)

See Section 4 for numerical examples.

Remark. If we do not know that the distribution has Dirac masses, a
convenient way is to plot the function

for a E [ -1, 1].

If c has a Dirac mass at the point a then limn ~ 00 c(ln (x, a)) ¥ 0 (0
otherwise). In Fig. 2 we have plotted the function c(ln(x, a)) (c acts on x),

for aE [-1,1], C=X[_I,I] dx+(jo.5 and n=20.

A similar result holds for the Christoffel function: if Pk (c, x) is the
orthogonal polynomial with respect to the linear functional c defined as in
the introduction, then the Christoffel function is

1
A.n(x):=~n p 2 ( ).

L...k=O k C, X

1.2

-0.2

FIGURE 2
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1.2

1
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FIGURE 3

The values of An (x) can be computed using the Fortran routines
published in [14] or with e-algorithm on a computer algebra (see
Section 3).

If the distribution c possesses a Dirac mass at the point a then this
function will have a peak at this point a. In Fig. 3 is plotted the Christoffel
function An(a), aE [-1,1] for the distribution c, using the same number
of moments as in the Fig. 2, that is to say for n = 10. Note that the
Christoffel function does not require the knowledge of the support of the
the distribution c [13].

Generally, computing modified moments from the ordinary power
moments may lead to numerical instability [7] and the former are
computed, if possible, directly from the expression of c [4, 8]. Here we
have to compute modified moments for Chebyshev polynomials and it can
be done by using their three-terms recurrence relationship.

3. PADE ApPROXIMANTS AND e-ALGORITHM

We assume now that c and ware related by (5)

c=W +Ac5a

and that w satisfies

<w, p) = f p(x) dIX(x)
R

aER,

pEP,

AEC, (5)

IX bounded, nondecreasing function. (6)
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Relation (5) is equivalent to

(x-a)c=(x-a)w.

Let us set

181

c= (x-a) c

the moments cn and wn satisfy

and w=(x-a)w;

n=O, 1, ....

The orthogonal polynomials with respect to C= w will be denoted by
Pk(c, x) or Pk(w, x). From the Christoffel Darboux identity, it arises

n n

Pn(c, x) = L Pdc, x) Pdc, a) = Pk(w, x) = L Pk(w, x) Pk(w, a),
k~O k~O

where Pk(d, x) are orthonormal with respect to the functional d:

k,jEN.

Let us now consider the sequence of polynomials:

= k~O Pdw, x) Pk(w, a)/k~O P~(w, a) (8)

= k~O Pk(c, x) Pdc, a)/k~O P~(c, a). (9)

The moments c(ln(x, a)) satisfy

From relation (5), the moments c(ln(x, a)) can also be expressed as

(From (8)).
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A condition which insures that

is that IX be continuous at the point IX and the distribution dlX belongs to
the set E of distributions uniquely determined by their moments [6, p.62].

THEOREM 2. If c and w satisfy the relation (5). If w satisfies (6) with
dlX E E and IX continuous at the point a E R.
Then

A = lim c[ln(x, a)] = lim L:n 12 •
n ~ 00 n ~ 00 k ~ 0 Pk (c, a)

(10)

Remark. If IX(X) has some jumps at the points ai' ..., aq of magnitude
A I' ... , A q E R + then the relation (5) becomes

q

c=w+ L A;ba;+Aba
;~I

which is equivalent to the relation (1).

The quantities involved in (10) which are also required in the
computation of the weights in Gauss-Christoffel quadrature formula can
be evaluated from the three-terms relation satisfied by the orthogonal
polynomials Pk(c, a) (see [9,8]).

These quantities IlL P~ (c, a) can also be computed with e-algorithm as
explained in the following proposition:

PROPOSITION 1.

where the quantities e~~) are computed with the e-algorithm of Wynn,

k, n = 0, 1, 2, ...,
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with the initial conditions

e~)1 = 0 n = 0, 1, 2, ...

e&n) = cn/an, a # 0

Proof First, we write c[ln(x, a)] in terms of Pade Approximants.
From

c=(x-a)c

we get

183

n = 0,1,2, ...,

and so

Thus

( ) _~(P(x)-p(a))+ ()c p -c CoP a
x-a

Applying the functional c to equality (7) gives

pEP.

[I ( )]
_c[Pn(c,x)]

c n x, a -
Pn(c, a)

= (c [Pn(C, x;=:n(C, a)] +COPn(c, a))IPn(c, a)

=> c[ln(x, a)] = Co +a-I [n - l/n]f (a-I)

[5, Chap. 3],

where [n/n] is the Pade Approximant to the function

f(t) :=co+cOt+C l t2 + ....

Now, it is well known that Pade approximant to the series f and
e-algorithm are related by [5, p. 159]

[n/n]f (t) = e~~),
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where e-algorithm is applied to the sequence of partial sums of f:fn(t) =
co+cot+c j t2 + ... +cn_1tn.

Herefn(l/a)=co+co/a+c j /a 2 + ... +cn_dan=cn/an if aER*.
For the general case, a E R, we can use the homographic invariance

under argument transformation: 1

Define an homographic transformation of the argument t,

t u
u=--+-+t=--

I+bt I-bu'

and thereby a new function g(u) = f(t) = f(u/(I- bu)).
Then (Theorem of Baker, Gammel, and Wills, see [3, p. 32, 1. 1])

From

The partial sums of the series fat t = I/a corresponding to the partial
sums of gat u= I/(a+b) are

n "n (n) bn-j(b +E) Co £...j=O j cj

(b+at (b+at

and if a = 0 then we can take b = 1 and so e&n) = (I+ E)n Co. I

4. NUMERICAL EXAMPLES

EXAMPLE 1.

C= dx+ <5 0.5

1 I thank A. Magnus for this proof.

on [ -1, 1].
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Only the moments and the support of c are assumed to be given. Since the
distribution dx is positive, e-algorithm can be used as well as the
Chebyshev polynomials. The mass at the point a = 0.5 is A = 1 (See
Table I),

1-(-lt n
cn = +0.5

n+l

c[ln(x, a)] = kt: c(Tk) Tda)/kt: T~(a)

column (2)

column (4)

column (5)

(c(Tn ) (column (3)) does not converge to 0, which confirms the presence of
Dirac masses; see [16]).

We can see that both c(ln(x, a)) and ei~)(cna-n) converge to A = 1.
We can remark that the convergence of the first one is faster than that
of the second one, but it must be noted that e-algorithm does not require
the knowledge of the support of c. In Table I the e~O) with n odd are
omitted because they are only used for the computation of the e-array (see
Proposition 1).

TABLE I

Computation of the Mass A at the Point a = 0.5 for c = X[-1.1] dx + DO.5

(1 ) (2) (3) (4) (5)
n Cn c(Tn) c(ln) e~O)

0 OOסס.3 1.5000 OOסס.3 OOסס.3

1 0.5000 0.5000 2.3330
2 0.9167 -1.1667 2.3330 2.1429
3 0.1250 ooסס.1- 1.6670
4 0.4625 -0.6333 1.6220 2.0940
5 0.0313 0.5000 1.5600
6 0.3013 0.9429 1.3840 1.6313
7 0.0078 0.5000 1.3580
8 0.2261 -0.5317 1.3400 1.5102
9 0.0020 ooסס.1- 1.2720

10 0.1828 -0.5202 1.2610 1.4989
15 OOסס.0 ooסס.1- 1.1700
20 0.0952 -0.5050 1.1360 1.2406
25 OOסס.0 0.5000 1.1070
30 0.0645 0.9978 1.0880 1.1670
35 OOסס.0 0.5000 1.0780
40 0.0488 -0.5008 1.0670 1.1332

640/71/2-5
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EXAMPLE 2.
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where (w,p) = foo p(x) e- X dx.
o

Here, the method of Section 2 cannot be used, since the interval is infinite.
By applying the e-algorithm (see Section 3) to the sequence Cn 7.5 -n, the
limit of ei~) is A = 4,

Cn= n! + 4 x 7.S n => Cn7.S -n = n! 7,S -n + 4

(See Table II).

EXAMPLE 3. Let the distribution be defined as

C = w with w(xn) =r xnw(x) dx,
-I

where

The coefficients

w(x)=x+1

w(x)=1-x

on [-1,0.S[

on ]O.S, 1].

o.sn+ 1 2
C =--+-----
n n+2 (n+1)(n+2)

Cn= o.sn + I/(n + 2)

n even

nodd

are supposed to be given. The goal is, here, to compute the jump of w at
the point a = 0.5 (this value a = 0.5 can be approximated by the method
explained in [16]).

TABLE II

Computation of the Mass A at the Point a = 7.5 for c = e -x dx + 4b7.5

n 0(0) n 0(0) n 0~0) n 0~0)
n n

0 5.o00ooo 12 4.002010 24 4.001458 36 4.001123
2 4.023121 14 4.001910 26 4.001338 38 4.001105
4 4.004119 16 4.001858 28 4.001284 40 4.001105
6 4.003355 18 4.001635 30 4.001283 42 4.001083
8 4.002554 20 4.001532 32 4.001254 44 4.001036

10 4.002495 22 4.001532 34 4.001182 46 4.000993
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The jumps of w will appear in the derivative (in the sense of distribu­
tions) of w. If w has a finite number of jumps of finite magnitude Ai at
points aI' ..., aq then the derivative of w satisfies

q

w' = {w }' + LA; <5 Q;'

;=1

where {w}' is the derivative of w in the usual sense, if it exists.
The moments of w' can be computed as

VpEP, 1 flf p(x) w'(x) dx = - p'(x) w(x) dx
-I -I

by integration by parts, and so

c~=O.

c' is not a positive distribution, so the s-algorithm is uneffective. We can
only use the Chebyshev kernel (See Table III). The sequence c'(Tn ) does

TABLE III

Computation of the Jump of w(x) = 1 + x, X E [ -1,0.5], 1- x, X E [0.5, 1]
at the Point a = 0.5

(1 ) (2) (3) (4)
n c~ c'(Tn) c'(In(x, a))

0 0.000 0.000 ooסס0.0

1 -1.250 -1.250 -0.83333
2 -0.167 -0.333 -0.45833
3 -0.594 1.375 -0.91667
4 -0.050 0.933 -1.02222
5 -0.359 -0.125 -0.94500
6 -0.013 -1.029 -0.96888
7 -0.257 -0.688 -0.99595
8 -0.003 0.317 -0.97339
9 -0.202 1.037 -0.98621

10 -0.001 0.657 -1.00178
15 -0.125 1.013 -0.99447
20 -0.000 0.426 -0.99605
25 -0.077 -0.558 -0.99988
30 -0.000 -1.001 -0.99842
35 -0.056 -0.456 -0.99879
40 -0.000 -0.538 -1.00004
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not converge to 0, which indicates that the distribution c' has Dirac
masses. The point a = 0.5 can be calculated with

a = lim [c'(Tn+ d+ c'(Tn_ 1 )J/2c'(Tn)
n~ 00

and the mass A = - 1 satisfies

A = lim c'(ln (x, a))
n~ 00

(see [16J)

5. LIMIT OF TOTALLY MONOTONIC SEQUENCES

An important application of the previous sections is the calculation of
the limit of totally monotonic sequences.

DEFINITION. A sequence (cn)nEN is said to be totally monotonic
(cn E TM) if

for n, k = 0, 1, ...

or equivalently if there exists a nondecreasing function a such that

n=O, 1, ....

It is well known that a TM sequence is always convergent and that the
limit I satisfies

1= a(l ) - a( 1- ) [5, pp. 116-120].

Since a is nondecreasing, we can apply Theorem 2 and thus the limit
of the sequence (cn)n can be found by the e-algorithm [5, p. 165]. It is
possible to generalize the result of Section 2 for Jacobi polynomials on
[0, 1].

In the particular case where a = 1, it is possible to extend the properties
of the Chebyshev reproducing kernel In (x, a) of Section 2 to Jacobi
polynomials on [0,1] (shifted Jacobi polynomials).

LEMMA 1. Let P:(I>.·/J)(x) be the shifted Jacobi polynomial with (3> -1,
a> -1. Let In(x)=P:(I>.·/J)(x)/P:(I>.,Pl(l) then

(i) In(l)=l

(ii) f3 < a, a> - &=> limn ~ 00 In (x) = 0, "Ix E [0, 1[

(iii) Iln(x)1 ~ 1 VXE [0,1].
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The polynomial In (x) for fI. = 1, f3 = 0 and n = 15 is plotted in Fig. 4.

Proof The Jacobi polynomials p~",P)(x) satisfy [18, p.58J

189

r p~",P)p~,P)(x)(l-x)"(I+x)Pdx=O
-1

The normalization of p~",P) is taken such that

The shifted Jacobi polynomials are defined by

if n #m.

if n#m.f: P;:,(",P)(x) P;:,(",P)(x)(l- x)" x fJ dx =0

P;:'(CL,P)(I) =(n: fl.)

P;:,(",P)(O) = P~CL,{J)( -1) = (-1 r (n: f3).

Moreover, if f3<fl., IX> - !,

(
n + IX)max Ip;:,(",{J)(x)1 = ::::; n",

0';; x';; 1 n

and

if IX> -!,

XE [0, 1[ [18,p.168]

0.8

0.6

0.4

0.2

-0.2

.2 0.4

FIGURE 4

0.6 0.8 1
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Thus

MARC PREVOST

(i) In(l)=P;:(IX,P)(l)jP;:(IX,!3)(l)= 1

(ii) j1n(x)j = P:(IX'P)(x)j(n~lX) ~ 1, VXE [0, 1J

(iii) Iln(x)I=0(n-1/2)/(n~IX)--+O when n--+oo for a>-~,

VXE [0,1[, I

The Lebesgue theorem insures that

lim cUn(x))= lim f11n(x)da(x)=I,
n-oo n-oo 0

THEOREM 3, If the sequence (cn)nEN E TM and a> -~, a> f3 then

}
. C(P;:(IX,P)(X))

n:moo P;:(IX,!3)(l)

TABLE IV

Computation (Carried Out with 30 Digits) of the Limit of
the Sequence cn = 1/(n+ 1)+ LZ:;'~ [1-(1-(1/k3)k]

(1) (2) (3) (4) (5)
n Cn e~O)(cn) c(ln) e~O)(c(ln))

0 1.234 1.23437 ooסס1.2343750 l.23437500000000000000
1 0.841 0.64494503506
2 0.735 0.69698 0.62035175592 0.61928095192382953370
3 0.691 0.62250209505
4 0.669 0.64161 0.62228637748 0.62230594922597273668
5 0.656 0.62231515838
6 0.647 0.62938 0.62231051757 0.62231120734183040435
7 0.642 0.62231137699
8 0.638 0.62548 0.62231117901 0.62231122482714539152
9 0.635 0.62231125343

10 0.633 0,62394 0.62231120596 0.62231122673275067693
11 0.631 0.62231124333
12 0.630 0.62323 0.62231121309 0.62231122657072932174
13 0.629 0.62231123724
14 0.628 0.62287 0.62231121822 0,62231122657169596626
15 0.627 0.62231123308
16 0,627 0,62267 0.62231122151 0.62231122657176348050
17 0.626 0.62231123052
18 0.626 0,6225 0.62231122348 0.62231122657176407405
19 0.625 0.62231122900
20 0.625 0.62247 0.62231122465 0.62231122657176411017
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The computation of c(p:(Ct,/l)(x)) is very easy with the following
expression of p:(Ct,P)(x) [18, p.68],

p:(Ct,/ll(X) = v~o (:~~)e:p) (x-I)" x n- v
,

and

C(p:(Ct,Pl(X)) = v~O (: ~ :)(n: P) c((x -1 rxn- V)

v~O (: ~ :)(n: P) jVcn _ v '

NUMERICAL EXAMPLE.

n+2 [ ( 1 )kJ
cn = Ij(n+ 1)+ k~2 1- 1- k 3 n~O.

The sequence (cn)n is totally monotonic and the convergence is
logarithmic.

Column (3) contains the diagonal of the s-array, for the sequence (cn)n­
Column (4) contains c(ln(x)) for iX= 1, P=O. Using exact arithmetic,
we saw that c(ln) is totally oscillating around its limit 1 up to 50
that is (( -1 r (c(ln(x)) -I)) E TM, and applying the s-algorithm to it
gives column (5) (see Table IV). The limit seems to be:
0.622311226571764110266.... (computed by means of E-algorithm with
auxiliary sequences Ij(n+ 1), Ij(n+ 1)2, 1j(n+ 1)3, .... (See [12, 17])).
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